厂房承重检测鉴定——钻芯法混凝土强度检测:
1、关于芯样的钻取位置
CECS03 :88 规定,芯样应在结构或构件的下列部位钻取:
(1) 结构或构件受力较小的部位;
(2) 混凝土强度质量具有代表性的部位;
(3) 便于钻芯机安放与操作的部位;
(4) 避开主筋、预埋件和管线的位置,并尽量避开其他钢筋;
(5) 用钻芯法和非破损法综合测定强度时,应与非破损法取同一侧区。J TJ / T272 - 99 关于钻芯取样的位置与上述规定基本相同,但规定不得在预埋件和管线等位置钻芯取样,比前述要求严格一些。J TJ270 - 98 仅有上述(1) 和(4) 两个要求。J TJ053- 94 规定:在钻取芯样前应该考虑由于钻芯可能导致对结构的不利影响,应该尽可能避免在靠近混凝土构件的接缝或边缘处钻取,且基本上不应带有钢筋。DL/ T5150 - 200l 未对钻芯本身作出具体规定。BETC - 3006A 仅要求应该在进行回弹法和超声回弹综合法的构件上钻取芯样,钻取芯样的位置应该在相应无损检测的测区内。SJ G09 - 99 规定,禁止在有钢筋的部位钻芯,以防钻断钢筋影响桩体钢筋的完好性。在实际操作时,常常遇到一些标准中没有考虑到的情况,或者标准中规定不明确的情况。如对钢筋混凝土梁取样时,究竟在什么部位取芯合适,标准中没有明确规定,而且类似的构件在不同的结构形式中,其受力情况也不完全相同,有时候检验人员缺乏结构方面的知识,难以作出正确判断,于是会出现在影响结构安全的部位钻芯取样,故新修订的规范应该在这方面予以明确。
2、关于钻取的芯样数量和芯样直径
关于钻取芯样的数量,不同标准的要求有所不同,而且不同的工程结构对芯样的数量要求也不同。CECS03 :88 对芯样数量规定为:按照单个构件检测时,每个构件的钻芯数量不应少于3 个,对于较小构件,钻芯数量可取2 个。J TJ / T272 - 99 根据芯样的直径大小,对每一个芯样的试件数量作出了规定该标准同时规定:当单独采用芯样试件强度判定单个结构中混凝土强度时,钻取的芯样试件不宜少于3 个。SJ G09 - 99 规定,基桩质量评定按照单桩进行。而钻孔数量按照桩的直径来定,直径在1600mm 以上时,钻孔数不少于2 个;直径在1600mm 以下时,钻孔数为1 个。对每个钻孔的芯样试件数量规定为:“每孔均应选取桩芯混凝土抗压试件芯样,每115m 应有一块,且每孔不应少于10 块,宜沿桩长均匀选取,每块芯样必须标明取样深度,剩余芯样应移交业主保留至桩基验收”。DL/ T5150 - 2001 规定了芯样试件的数量为3个;而J TJ053 - 94 对芯样钻孔数量和芯样试件均未做规定;BETC - 3006A 规定小芯样数量不得少于6 个,有效数据不得少于4 个。从上述规定可以看出,标准对钻取的芯样数量和芯样试件数量没有规定清楚,由于芯样试件可以在同一个芯样上制备,所以应该将芯样和芯样试件予以区别。一些标准只规定数据结果以三个试件的数据平均值为准,没有明确这三个试件是来自同一个芯样还是不同芯样。关于芯样的直径也没有明确和统一的规定,使得不同的检验结果之间缺乏可比性。CECS03 :88 规定:“钻取的芯样直径一般不宜小于骨料较大粒径的3 倍,在任何情况下不得小于骨料较大粒径的2 倍”。J TJ053 - 94 规定:“芯样直径应为混凝土所用骨料较大粒径的3 倍,一般为(150 ±10) mm 或者(100±10) mm ,对于路面工程,芯样长度应该与路面相同”。J TJ /T272 - 99 没有对芯样直径作出明确规定,容许使用50mm 以上的芯样直径。J TJ270 - 98 没有直接规定芯样的直径,而是根据不同骨料大小,规定了钻头的直径为粗骨料较大粒径的2倍
厂房承载力安全性检测鉴定,以框架结构为例,检测鉴定内容如下:
1、对房屋的原设计图纸、装修改造意图、历史修缮加固情况、前期的使用情况及后期的使用要求进行调查了解;
2、对房屋结构类型、建筑层数、地址、建造年代、朝向、装修概况及使用用途进行现场调查;
3、对房屋的地基基础、上部结构、围护结构、建筑装修及建筑设备进行外观检查、测量,对部分典型构件损坏情况(变形、开裂、沉陷、渗漏、露筋等)进行外观检查及拍照记录;对损坏较严重、重要性构件及设计改造有特别要求的构件进行重点检测鉴定;
4、采用裂缝测宽仪进行裂缝情况进行测量,包括其长度、宽度、深度、形状、条数,必要时绘出裂缝分布图;依据《混凝土结构设计规范》(gb50010-2002)对其进行评定,判断其是否**出规范允许值。
5、采用“djd2-1gc”型电子经纬仪对房屋部分部位竖向构件倾斜率或偏移比值进行测量,分析是否出现倾斜及不均匀沉降现象。
6、对房屋现有上部结构的建筑及结构布置、构件尺寸、楼板厚度、层高等情况进行现场测量,并与设计图纸进行复核。
7、按照国家现行相关检测标准及设计要求抽取一定数量的钢筋混凝土柱、梁及板构件进行配筋情况、砼保护层厚度检测。
8、按国家现行相关检测标准及设计要求抽取一定数量的钢筋混凝土柱、梁及板构件采用钻芯法进行混凝土抗压强度检测。
9、对多层砖混砌体结构现有房屋的结构体系、现有房屋的整体性连接构造、承重墙体的砖、砌块和砂浆强度、易引起局部倒塌的部件及其连接及抗震横墙间距和宽度等是否符合抗震规范要求进行检测鉴定。
10、对多层框架结构现有房屋的结构体系、现有房屋的整体性连接构造、承重墙体的混凝土强度、易引起局部倒塌的部件及其连接及抗震横墙间距和宽度等是否符合抗震规范要求进行检测鉴定。
11、根据现场检查、检测结果,并依据国家现行相关规范对该房屋现状结构进行承载力验算分析及抗震验算分析。
12、根据检查、检测情况和验算结果,依照《建筑抗震鉴定标准》(gb50023-2009)及《民用建筑性鉴定标准》(gb 50292-1999)判定该房屋现状抗震性能及结构安全性是否满足目前的使用要求,并对不满足抗震要求、安全使用要求及目前出现结构损坏的构件提出合理的处理建议。
工业区厂房质量安全检测鉴定的必要性——混凝土老化、钢筋腐蚀:
钢筋混凝土结构在使用若干年后,将有很多构件因环境因素而出现混凝土碳化、表面龟裂、甚至会出现大小不一的纵横裂纹。这些现象轻则影响美观,重则可危及到结构的安全和耐久。因此,正确分析和防治混凝土碳化,处理好已形成的裂缝,对结构中的钢筋锈蚀、病害将有一定的抑制作用。钢筋锈蚀对钢筋混凝土结构及预应力混凝土结构的耐久性影响较大,其产生的主要原因有两个:
一是外因,即周围环境对结构有不良作用的介质(气体、液体、固体) ,周期性的冷热交替作用,冻融循环作用等;
二是内因,即混凝土的液相组成,再就是混凝土的后期养护等。工程调查发现,结构自身的某些状态对其锈蚀的影响和人们的一些习惯认识并不完全一致,所以搞清楚各种环境中混凝土状态对锈蚀的影响,以便采取不同的对策,提高钢筋混凝土结构的耐久性是十分重要的。
2 混凝土中钢筋锈蚀的影响因素
温、湿度对钢筋锈蚀影响相对湿度对混凝土中钢筋锈蚀有双重作用,一方面影响混凝土中氧气的扩散速度;另一方面则影响混凝土的电导率。因此存在一个钢筋锈蚀速度较快的相对湿度。湿度不仅直接影响钢筋的电化学锈蚀速度,而且还影响混凝土的碳化速度,从而间接地使钢筋产生锈蚀。混凝土的湿度大时,其自由水含量高,对空气的渗透性低,碳化慢,完全饱和的混凝土不可能碳化, 但是完全干燥(相对湿度不大于25 %) 的混凝土一般也不会碳化。根据实际调查和试验分析,结果发现气候比较干燥的地区,钢筋锈蚀较慢,而常年多雨、干湿交替频繁的地区锈蚀较快。在干燥的环境下,如室内的钢筋混凝土结构,不仅碳化速度慢,而且即使碳化达到钢筋表面,钢筋也未发生锈蚀,大多数钢筋混凝土结构构件处于干噪环境下,运行几十年也未发生钢筋锈蚀。而当结构构件处于湿度较大的环境下,尤其是处于干湿交替的环境或漏雨、渗水的部位,钢筋锈蚀一般较快。混凝土中钢筋的锈蚀速度与温度成正比。如果在相对湿度为90 %的大气中,从20~40 ℃,混凝土锈蚀面积率增大4 倍;从40~60 ℃,增大1 倍。不论增大多少,温度升高均会加剧钢筋的锈蚀。
混凝土的密实度及保护层厚度的影响混凝土对钢筋的保护作用主要表现为:一是混凝土的高碱使钢筋表面形成钝化膜;二是保护层对外界腐蚀介质、氧气及水分等渗入的阻止作用,后一种作用主要取决于混凝土密实度及保护层的厚度,而水灰比及养护条件对混凝土的密实度有很大影响。试验表明,随着水灰比的增大,混凝土的氧扩散系数及透氧量都明显增长,因此水灰比愈大,钢筋的锈蚀程度就愈重。混凝土保护层厚度是影响钢筋锈蚀的另一个重要因素。在相同的环境下,保护层越厚,其完全碳化的时间就越长,钢筋的锈蚀程度越轻。根据试验资料分析,保护层厚度对钢筋的影响系数为:Φa = 1148 - 0125 a (1)式中,Φa 为钢筋锈蚀厚度影响系数; a 为混凝土保护层厚度,mm。从式(1) 可见,保护层对钢筋锈蚀的影响呈线性关系。钢筋保护层厚度除了具有延长钢筋开始锈蚀的时间外,增加保护层厚度还能提高混凝土抵抗钢筋锈蚀膨胀引起混凝土开裂的能力。